The state of EV charging: more questions than answers

As you may have guessed, we at Charged believe that electricity is the best way to power our vehicles in the post-fossil fuel era. Compared to other contending technologies (biofuels, natural gas, hydrogen), electricity is the most efficient, and our best shot to be truly sustainable.

However, there’s a much more immediate reason why automakers are placing the bulk of their bets on electricity: most of the required infrastructure is already in place. While building an affordable EV that can compete with today’s gas-powered vehicles is still a challenge, the energy to power it is as accessible as the nearest electrical outlet.

However, this doesn’t mean that there are no infrastructure issues to be dealt with. There are standards to be agreed on, charging stations to be installed, and money to be made. For EV drivers charging is a straightforward affair, but anyone trying to navigate the technical and business issues of this brand-new industry will find that a lot of questions have yet to be answered. 

We chose some of the more interesting questions and put them to executives at several of the charging industry’s prominent companies, including equipment manufacturers and software and service providers.

Are we in for a standards war?

Will EV drivers need to carry a trunkful of dongles to hook up to different kinds of charging stations? Is there going to be a standards war a la the Betamax vs VHS and Blu-Ray vs DVD matchups? Will consumers end up with an inferior standard that happens to conquer the market?

For Level 1 and 2 charging, the answer is no. Back in the EV1 era, there was a jumble of charging protocols, but today’s EV and PHEV models come with a standard recharging connector, dubbedJ1772 by the Society of Automotive Engineers (SAE) (Tesla, which has to be different, has a proprietary connector, but an adaptor allows a J1772 plug to be used).


2012 Nissan LEAF – CHAdeMO DC Quick Charging port (left) & SAE J1772 charging port (right).
Photo courtesy of Nissan.

In the world of DC Fast Charging, on the other hand, a battle has erupted.

The most widely used DC standard at the moment is a Japanese one called CHAdeMO – the name is a pun on the Japanese phrase O cha demo ikaga desuka, which invokes a pleasant image of having a cup of tea while charging. The Nissan LEAF and Mitsubishi MiEV feature both J1772 and CHAdeMO ports.

Meanwhile, SAE and the International Electrotechnical Commission (IEC) are working on a connector that incorporates AC (Levels 1 and 2) and DC connections on the same plug. It will also use Power Line Carrier technology to exchange data among the vehicle, charger, and smart grid. Several US and most European carmakers (Ford, GM, Chrysler, Audi, BMW, Mercedes, and VW) have agreed to use this “Combined Charging System,” which should be released some time in 2012.

Vehicles and charging stations are currently being manufactured with CHAdeMO, or with no DC connection, so if SAE/IEC publish a competing standard, could it cause a costly conflict? Two charger makers to whom we posed the question didn’t seem too concerned.

Phil Charatz, CEO of Fuji Electric America, said, “Fuji has adopted the CHAdeMO standard. Vehicles with the SAE Quick Charge Interface are not likely to be on the road until 2014, so in the near term, both standards will need to be available. Equipment manufacturers and automotive companies must remain flexible and be able to adapt as the market determines the leading standard.”

Jonathan Read, CEO of Ecotality, said, “we built our DC Fast Charge units with two ports, allowing for dual functionalities should standards change. It will be much less costly to change out one port of our hardware systems than to replace the unit entirely.”

Whatever happens, even if different regions (North America, Europe, Japan) end up with different standards, while the result may be a headache for equipment makers, it probably won’t be much of an issue for EV drivers.

Do public charging stations make sense? Will anyone use them?

As readers of the Charged Newswire blog know, every week brings news of a new batch of public charging stations opening up, from the Oases of the Illinois Toll-way to the Cracker Barrels of the Tennessee Triangle to the West Coast Electric Highway. Europe and China are getting wired up even faster than the US.

Much of this activity is being driven by government support. The US government has financed two major charging networks, which have already installed thousands of chargers in several states: Ecotality’s EV Project and Coulomb’s ChargePoint America. Many state and local governments are also getting into the act.

Policy-makers obviously see public chargers as an important part of the new energy economy. Some in government and the industry speak of a chicken-and-egg scenario in which people won’t buy EVs until there’s a comprehensive network of public chargers available. Others believe that most EV drivers will do their charging at home or at work, and are skeptical about the actual use of public charging stations.

It’s much too early to know how much use public chargers will see, but there’s no doubt that their presence does a lot to raise public awareness of EVs. After all, how could we expect the general public to buy a plug-in car when they have never seen a car plugged in?

They may also be an effective cure (or placebo) for the latest malady to plague the long-suffering consumer: the dreaded range anxiety. This is the fear of running out of juice that afflicts potential EV buyers (the condition is almost unknown among actual EV owners).

Fuji’s Phil Charatz: “Of particular importance to achieving widespread adoption is helping drivers overcome range anxiety, and DC Quick Charging has proven to be a source of reassurance for consumers. As the development of charging infrastructure continues, Fuji views DC Quick Charging as a critical aspect of the industry’s long-term success.”

Where are the best places to put them?

Forest Williams, Vice President of Sales and Marketing at Liberty PlugIns, believes that a lot of people will charge at work, and that many businesses will add chargers to their parking lots as a benefit for their employees. He also points out that when people drive more than 30 miles in a single direction, they are usually going someplace where they’re going to be for a few hours, so Level 2 charging would be adequate in most cases. Williams sees parking lot operators as the most likely buyers of charging equipment. “Charging is parking” is his company’s motto. Most of the experts we surveyed agree that DC fast chargers make sense at places like restaurants along Interstate highways, as they enable longer trips that would otherwise be out of EV range. However, some are skeptical about chargers at places where people don’t stay very long, or that don’t offer something to keep people entertained while waiting to charge. 

Could competing networks become a problem for consumers?

Any business or organization that provides EV charging services needs a way to authenticate users, keep track of usage and handle billing. Even a company that plans to offer free charging will probably want a way to limit access to customers or employees. That’s why most charging stations are connected to a network, which offers charge station owners a convenient way to handle these tasks.


A Nissan LEAF using Ecotality’s Blink Network.
Photo courtesy of Ecotality.

Currently, the biggest charging networks in North America are Coulomb’s Chargepoint and Ecotality’s Blink Network. Using either of these networks is as simple as using an ATM, a library card or a toll pass – when you join, you receive a card (RFID or swipe-able) that you use to get access to chargers, and the network bills your credit card. You can locate chargers online or on your smart phone. Coverage areas overlap in many places, so some drivers may want to be a member of more than one network. EV Connect CEO Jordan Ramer doesn’t see a problem with this. If necessary, drivers can join several networks, with only the minor inconvenience of a few more plastic cards to carry around. Jonathan Read agrees. “I think a competitive marketplace is common and encouraged with any new and developing industry.”

The equipment manufacturers

If you are in the market for a charging station one thing is clear: You have options. Everyone is making them, from multinational conglomerates to small start-ups and automakers.


The long list of charging station equipment manufacturers.

Which payment structure will prevail?

Networked charging stations communicate with the host network via a cellular modem or Wi-Fi transmitter installed in the charger itself. This communications link is used not only for billing authorization but also to exchange data with the network, allowing text messages or email alerts to users, for example to let you know when your EV is finished charging, or that someone else has come along and unplugged your cable.

Some charging stations don’t have cellular or Wi-Fi connectivity, but instead use Synchronous Codes. Liberty Plugins has developed one such system which allows charging station owners to control access and generate revenue without being part of a network. To visualize how this works, imagine buying a car wash at a gas station. You pay for the car wash at the gas pump, which generates a numerical code that you punch in to start the soap and water flowing. 

Businesses like parking lot operators should find Synchronous Codes easy to incorporate with their existing payment systems, including central pay stations. Vendors can get by with cheaper charging hardware, and skip the modem or cellular charges. Rolling codes also make it simple for businesses to offer free charging to customers – you buy something, you get a code for the charger. Liberty’s Forest Williams also touts the privacy benefits, noting that a billing network that keeps track of usage data “comes with a price tag, and a willingness to give up your private information.”

Ecotality CEO Jonathan Read counters that connected chargers offer additional capabilities. “Rolling codes are fine for access control, but they don’t help you to exchange information. By using cellular and Wi-Fi connectivity, we can not only provide authorization by several mechanisms, but we can send data on power and energy usage to homeowners, utilities or local commercial hosts. We can send software updates to enable new features, and send commands to the unit to allow it to intelligently manage loads.”

Who’s going to get rich?

If things go as they did in the days of the Internet revolution, the answer to this question will probably surprise everyone. However, the potential is undeniable. EV charging stations could be a $1.5 billion global industry by 2015, according to Pike Research. There seem to be ample business opportunities manufacturing and installing charging stations, and some of the companies offering networks and other software services may well build lucrative empires.

Most of our experts agree that public charging stations may be valuable amenities for businesses, but reselling electricity, or charge-time, does not seem likely to become a significant profit center. To cite an obvious parallel, gas stations make small margins on selling gas, which is why they push an ever-expanding array of drinks and snacks. 

The value-added model may very well pave the way for free charging at the majority of retail stores, in the same way that free Wi-Fi is available at every bookstore and coffee shop. 

Liberty’s Forest Williams points out that 70% of today’s public charging stations are free to use. He sees little profit potential in selling charge time itself, except perhaps for parking lot operators or in other locations where choice is limited, for the same reason that airports can charge for Internet access. Where else are we going to go? 

Mahi Reddy, CEO of SemaConnect, notes that most businesses are currently making charging available for free to their retail customers, but the data is not mature enough to tell which model will reign.

 

This article originally appeared in Charged Issue 2 – APR/MAY 2012